3.296 \(\int \frac{x^8 (c+d x^3)^{3/2}}{8 c-d x^3} \, dx\)

Optimal. Leaf size=109 \[ -\frac{384 c^3 \sqrt{c+d x^3}}{d^3}-\frac{128 c^2 \left (c+d x^3\right )^{3/2}}{9 d^3}+\frac{1152 c^{7/2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{d^3}-\frac{14 c \left (c+d x^3\right )^{5/2}}{15 d^3}-\frac{2 \left (c+d x^3\right )^{7/2}}{21 d^3} \]

[Out]

(-384*c^3*Sqrt[c + d*x^3])/d^3 - (128*c^2*(c + d*x^3)^(3/2))/(9*d^3) - (14*c*(c + d*x^3)^(5/2))/(15*d^3) - (2*
(c + d*x^3)^(7/2))/(21*d^3) + (1152*c^(7/2)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/d^3

________________________________________________________________________________________

Rubi [A]  time = 0.102259, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {446, 88, 50, 63, 206} \[ -\frac{384 c^3 \sqrt{c+d x^3}}{d^3}-\frac{128 c^2 \left (c+d x^3\right )^{3/2}}{9 d^3}+\frac{1152 c^{7/2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{d^3}-\frac{14 c \left (c+d x^3\right )^{5/2}}{15 d^3}-\frac{2 \left (c+d x^3\right )^{7/2}}{21 d^3} \]

Antiderivative was successfully verified.

[In]

Int[(x^8*(c + d*x^3)^(3/2))/(8*c - d*x^3),x]

[Out]

(-384*c^3*Sqrt[c + d*x^3])/d^3 - (128*c^2*(c + d*x^3)^(3/2))/(9*d^3) - (14*c*(c + d*x^3)^(5/2))/(15*d^3) - (2*
(c + d*x^3)^(7/2))/(21*d^3) + (1152*c^(7/2)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/d^3

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^8 \left (c+d x^3\right )^{3/2}}{8 c-d x^3} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x^2 (c+d x)^{3/2}}{8 c-d x} \, dx,x,x^3\right )\\ &=\frac{1}{3} \operatorname{Subst}\left (\int \left (-\frac{7 c (c+d x)^{3/2}}{d^2}+\frac{64 c^2 (c+d x)^{3/2}}{d^2 (8 c-d x)}-\frac{(c+d x)^{5/2}}{d^2}\right ) \, dx,x,x^3\right )\\ &=-\frac{14 c \left (c+d x^3\right )^{5/2}}{15 d^3}-\frac{2 \left (c+d x^3\right )^{7/2}}{21 d^3}+\frac{\left (64 c^2\right ) \operatorname{Subst}\left (\int \frac{(c+d x)^{3/2}}{8 c-d x} \, dx,x,x^3\right )}{3 d^2}\\ &=-\frac{128 c^2 \left (c+d x^3\right )^{3/2}}{9 d^3}-\frac{14 c \left (c+d x^3\right )^{5/2}}{15 d^3}-\frac{2 \left (c+d x^3\right )^{7/2}}{21 d^3}+\frac{\left (192 c^3\right ) \operatorname{Subst}\left (\int \frac{\sqrt{c+d x}}{8 c-d x} \, dx,x,x^3\right )}{d^2}\\ &=-\frac{384 c^3 \sqrt{c+d x^3}}{d^3}-\frac{128 c^2 \left (c+d x^3\right )^{3/2}}{9 d^3}-\frac{14 c \left (c+d x^3\right )^{5/2}}{15 d^3}-\frac{2 \left (c+d x^3\right )^{7/2}}{21 d^3}+\frac{\left (1728 c^4\right ) \operatorname{Subst}\left (\int \frac{1}{(8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )}{d^2}\\ &=-\frac{384 c^3 \sqrt{c+d x^3}}{d^3}-\frac{128 c^2 \left (c+d x^3\right )^{3/2}}{9 d^3}-\frac{14 c \left (c+d x^3\right )^{5/2}}{15 d^3}-\frac{2 \left (c+d x^3\right )^{7/2}}{21 d^3}+\frac{\left (3456 c^4\right ) \operatorname{Subst}\left (\int \frac{1}{9 c-x^2} \, dx,x,\sqrt{c+d x^3}\right )}{d^3}\\ &=-\frac{384 c^3 \sqrt{c+d x^3}}{d^3}-\frac{128 c^2 \left (c+d x^3\right )^{3/2}}{9 d^3}-\frac{14 c \left (c+d x^3\right )^{5/2}}{15 d^3}-\frac{2 \left (c+d x^3\right )^{7/2}}{21 d^3}+\frac{1152 c^{7/2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{d^3}\\ \end{align*}

Mathematica [A]  time = 0.0699023, size = 81, normalized size = 0.74 \[ \frac{362880 c^{7/2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )-2 \sqrt{c+d x^3} \left (2579 c^2 d x^3+62882 c^3+192 c d^2 x^6+15 d^3 x^9\right )}{315 d^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^8*(c + d*x^3)^(3/2))/(8*c - d*x^3),x]

[Out]

(-2*Sqrt[c + d*x^3]*(62882*c^3 + 2579*c^2*d*x^3 + 192*c*d^2*x^6 + 15*d^3*x^9) + 362880*c^(7/2)*ArcTanh[Sqrt[c
+ d*x^3]/(3*Sqrt[c])])/(315*d^3)

________________________________________________________________________________________

Maple [C]  time = 0.012, size = 541, normalized size = 5. \begin{align*} -{\frac{1}{{d}^{2}} \left ( d \left ({\frac{2\,d{x}^{9}}{21}\sqrt{d{x}^{3}+c}}+{\frac{16\,c{x}^{6}}{105}\sqrt{d{x}^{3}+c}}+{\frac{2\,{c}^{2}{x}^{3}}{105\,d}\sqrt{d{x}^{3}+c}}-{\frac{4\,{c}^{3}}{105\,{d}^{2}}\sqrt{d{x}^{3}+c}} \right ) +{\frac{16\,c}{15\,d} \left ( d{x}^{3}+c \right ) ^{{\frac{5}{2}}}} \right ) }-64\,{\frac{{c}^{2}}{{d}^{2}} \left ( 2/9\,{x}^{3}\sqrt{d{x}^{3}+c}+{\frac{56\,c\sqrt{d{x}^{3}+c}}{9\,d}}+{\frac{3\,ic\sqrt{2}}{{d}^{3}}\sum _{{\it \_alpha}={\it RootOf} \left ({{\it \_Z}}^{3}d-8\,c \right ) }{\frac{\sqrt [3]{-{d}^{2}c} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i \left ( -{d}^{2}c \right ) ^{2/3}\sqrt{3}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{2/3} \right ) }{\sqrt{d{x}^{3}+c}}\sqrt{{\frac{i/2d}{\sqrt [3]{-{d}^{2}c}} \left ( 2\,x+{\frac{-i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c}}{d}} \right ) }}\sqrt{{\frac{d}{-3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c}} \left ( x-{\frac{\sqrt [3]{-{d}^{2}c}}{d}} \right ) }}\sqrt{{\frac{-i/2d}{\sqrt [3]{-{d}^{2}c}} \left ( 2\,x+{\frac{i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c}}{d}} \right ) }}{\it EllipticPi} \left ( 1/3\,\sqrt{3}\sqrt{{\frac{i\sqrt{3}d}{\sqrt [3]{-{d}^{2}c}} \left ( x+1/2\,{\frac{\sqrt [3]{-{d}^{2}c}}{d}}-{\frac{i/2\sqrt{3}\sqrt [3]{-{d}^{2}c}}{d}} \right ) }},-1/18\,{\frac{2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{2/3}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd}{cd}},\sqrt{{\frac{i\sqrt{3}\sqrt [3]{-{d}^{2}c}}{d} \left ( -3/2\,{\frac{\sqrt [3]{-{d}^{2}c}}{d}}+{\frac{i/2\sqrt{3}\sqrt [3]{-{d}^{2}c}}{d}} \right ) ^{-1}}} \right ) }} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8*(d*x^3+c)^(3/2)/(-d*x^3+8*c),x)

[Out]

-1/d^2*(d*(2/21*d*x^9*(d*x^3+c)^(1/2)+16/105*c*x^6*(d*x^3+c)^(1/2)+2/105/d*c^2*x^3*(d*x^3+c)^(1/2)-4/105/d^2*c
^3*(d*x^3+c)^(1/2))+16/15*c/d*(d*x^3+c)^(5/2))-64*c^2/d^2*(2/9*x^3*(d*x^3+c)^(1/2)+56/9*c*(d*x^3+c)^(1/2)/d+3*
I/d^3*c*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3
))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3
^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*
d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x
+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),-1/18/d*(2*I*(-d^2*c)^(1
/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/
2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8*(d*x^3+c)^(3/2)/(-d*x^3+8*c),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.38414, size = 429, normalized size = 3.94 \begin{align*} \left [\frac{2 \,{\left (90720 \, c^{\frac{7}{2}} \log \left (\frac{d x^{3} + 6 \, \sqrt{d x^{3} + c} \sqrt{c} + 10 \, c}{d x^{3} - 8 \, c}\right ) -{\left (15 \, d^{3} x^{9} + 192 \, c d^{2} x^{6} + 2579 \, c^{2} d x^{3} + 62882 \, c^{3}\right )} \sqrt{d x^{3} + c}\right )}}{315 \, d^{3}}, -\frac{2 \,{\left (181440 \, \sqrt{-c} c^{3} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{3 \, c}\right ) +{\left (15 \, d^{3} x^{9} + 192 \, c d^{2} x^{6} + 2579 \, c^{2} d x^{3} + 62882 \, c^{3}\right )} \sqrt{d x^{3} + c}\right )}}{315 \, d^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8*(d*x^3+c)^(3/2)/(-d*x^3+8*c),x, algorithm="fricas")

[Out]

[2/315*(90720*c^(7/2)*log((d*x^3 + 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) - (15*d^3*x^9 + 192*c*d^2*
x^6 + 2579*c^2*d*x^3 + 62882*c^3)*sqrt(d*x^3 + c))/d^3, -2/315*(181440*sqrt(-c)*c^3*arctan(1/3*sqrt(d*x^3 + c)
*sqrt(-c)/c) + (15*d^3*x^9 + 192*c*d^2*x^6 + 2579*c^2*d*x^3 + 62882*c^3)*sqrt(d*x^3 + c))/d^3]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8*(d*x**3+c)**(3/2)/(-d*x**3+8*c),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.12501, size = 135, normalized size = 1.24 \begin{align*} -\frac{1152 \, c^{4} \arctan \left (\frac{\sqrt{d x^{3} + c}}{3 \, \sqrt{-c}}\right )}{\sqrt{-c} d^{3}} - \frac{2 \,{\left (15 \,{\left (d x^{3} + c\right )}^{\frac{7}{2}} d^{18} + 147 \,{\left (d x^{3} + c\right )}^{\frac{5}{2}} c d^{18} + 2240 \,{\left (d x^{3} + c\right )}^{\frac{3}{2}} c^{2} d^{18} + 60480 \, \sqrt{d x^{3} + c} c^{3} d^{18}\right )}}{315 \, d^{21}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8*(d*x^3+c)^(3/2)/(-d*x^3+8*c),x, algorithm="giac")

[Out]

-1152*c^4*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*d^3) - 2/315*(15*(d*x^3 + c)^(7/2)*d^18 + 147*(d*x^3
+ c)^(5/2)*c*d^18 + 2240*(d*x^3 + c)^(3/2)*c^2*d^18 + 60480*sqrt(d*x^3 + c)*c^3*d^18)/d^21